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Abstract 

Regression quantiles can be characterized as popular tools for a complex modeling of 

a continuous response variable conditioning on one or more given independent variables. 

Because they are however vulnerable to leverage points in the regression model, an 

alternative approach denoted as implicitly weighted regression quantiles have been proposed. 

The aim of current work is to apply them to the results of the second round of the 2018 

presidential election in the Czech Republic. The election results are modeled as a response of 

4 demographic or economic predictors over the 77 Czech counties. The analysis represents 

the first application of the implicitly weighted regression quantiles to data with more than one 

regressor. The results reveal the implicitly weighted regression quantiles to be indeed more 

robust with respect to leverage points compared to standard regression quantiles. If however 

the model does not contain leverage points, both versions of the regression quantiles yield 

very similar results. Thus, the election dataset serves here as an illustration of the usefulness 

of the implicitly weighted regression quantiles. 

Key words: linear regression, quantile regression, robustness, outliers, elections results 

JEL Code:  D72, C21, Y91 

 

Introduction  

Regression quantiles (quantile regression) have been commonly used in various economic 

applications for a complex modeling of a continuous response variable conditioning on one or 

more given independent variables (regressors, predictors). Implicitly weighted version based 

on the idea of robust regression was proposed by Kalina & Vidnerová (2019), where it was 

however studied only over simplistic data with one independent variable. 

Let us mention at least some interesting recent demographic applications of regression 

quantiles. Davino et al. (2018) applied regression quantiles to path modeling, i.e. to describing 

dependencies among a set of variables, in a study of quality of life in Italian provinces. Wu & 
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Guo (2017) used Bayesian quantile regression to find a set of factors, which affect the 

satisfaction level of the Taiwanese population. Similarly, Ngoo et al. (2020) applied quantile 

regression to find factors which determine the life satisfaction in Asian countries. Maškarinec 

(2017) exploited spatial statistical methods to analyze Czech parliamentary elections and was 

able to find (at least to some extent) that right-wing parties had higher support in 

economically stronger regions. In all these applications, a whole set of regression quantiles 

allows a more complex understanding of the relationship of the response on the predictors, 

compared to the information provided by the standard least squares estimator. We are 

however not aware of applications of regression quantiles to results of elections.  

The aim of this work is to apply the recently proposed implicitly weighted regression 

quantiles of Kalina & Vidnerová (2019) to the data from Czech presidential election of 2018, 

while each of the 77 Czech counties is considered as one measurement; such setup is unusual, 

as detailed analyses of elections are typically performed over survey samples of individual 

voters. Section 1 recalls standard as well as implicitly weighted regression quantiles. The data 

description follows in Section 2. We start with analyzing the data with beta regression in 

Section 3 and least squares in linear regression in Section 4, and results of the standard as well 

as the implicitly weighted regression quantiles are presented in Section 5. 

 

1    Regression quantiles 

We consider the standard linear regression model 

                            𝑌𝑖 =  𝛽0 +  𝛽1𝑋𝑖1 + ⋯ +  𝛽𝑝𝑋𝑖𝑝 + 𝑒𝑖 ,   𝑖 = 1, … , 𝑛,                                     (1) 

where 𝑌1, … , 𝑌𝑛 are values of a continuous response variable and 𝑒1, … , 𝑒𝑛 are random errors 

(disturbances). The usual task in regression modeling is to estimate the regression parameters 

𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝)𝑇 by means of estimating the conditional expectation of the response, 

given fixed values of the regressors (predictors). Especially under heteroscedasticity, it may 

be however more suitable to consider a whole set of several regression quantiles. 

Recently, promising new forms of regression quantiles have been proposed and 

investigated. For example, Bleik (2019) proposed a simultaneous estimation of several 

Bayesian regression quantiles assuming the random errors to follow a Laplace distribution; 

the method was applied to simulated data. Hlubinka & Šiman (2020) investigated generalized 

elliptical regression quantiles in both linear and nonlinear models for a multivariate response; 
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their method was applied to analyze anthropometric measurements over a set of 260 

physically active women. 

 

1.1   Implicitly weighted regression quantiles 

Standard regression quantiles are vulnerable to the presence of leverage points in the data and 

actually are not robust in terms of the breakdown point. With the motivation to improve the 

robustness, implicitly weighted regression quantiles denoted here as IWRQ were proposed by 

Kalina & Vidnerová (2019). The IWRQ procedure exploits the concept of weights assigned to 

individual observations, inspired by the least weighted squares (LWS) regression estimator; 

see Víšek (2011) or Kalina & Schlenker (2015) for a discussion of the LWS estimator, which 

is able to combine a high robustness (i.e. a high breakdown point) with a high efficiency. 

We will recall the definition of IWRQ by means of a weight function denoted as 𝜓. 

Let us use the notation 𝑢1(𝑏), … , 𝑢𝑛(𝑏) for residuals corresponding to a fixed 𝑏 ∊ ℝ𝑝+1. Their 

ranks will be denoted by 𝑅1(𝑏), … , 𝑅𝑛(𝑏) to stress the dependence on 𝑏. Keeping in mind that 

both these vectors depend on 𝑏, the LWS estimator may be expressed as 

                                               arg min
𝑏∊ℝ𝑝+1

∑ 𝜓1 (
𝑅𝑖(𝑏)

𝑛
) (𝑢𝑖(𝑏))2𝑛

𝑖=1 .                                   (2) 

Assuming two given weight functions 𝜓1 and 𝜓2, IWRQ is defined as 

         arg min
𝑏∊ℝ𝑝+1

∑ [𝜓1 (
𝑅𝑖(𝑏)

𝑛
) 𝐼[𝑢𝑖(𝑏) > 0] + 𝜓2 (

𝑅𝑖(𝑏)

𝑛
) 𝐼[𝑢𝑖(𝑏) < 0]]𝑛

𝑖=1 (𝑢𝑖(𝑏))2.      (3) 

Particularly, if it is chosen 𝜓2 = 𝑐𝜓1for a given 𝑐 > 0, then (3) reduces to  

                  arg min
𝑏∊ℝ𝑝+1

∑ 𝜓1 (
𝑅𝑖(𝑏)

𝑛
) (𝐼[𝑢𝑖(𝑏) > 0] + 𝑐𝐼[𝑢𝑖(𝑏) < 0])𝑛

𝑖=1 (𝑢𝑖(𝑏))2.           (4)  

In the computations, we use the definition (4). The choice 𝑐 = 1 corresponds to the 

LWS estimator itself, while 𝑐 > 1 estimates a bottom quantile and 𝑐 < 1 an upper quantile. 

Thus, the constant 𝑐 represents a parameter analogous to τ (but with a different interpretation) 

of standard regression quantiles. It is recommendable that the user chooses several different 

values of 𝑐 to examine the results for upper as well as lower quantiles. We use here trimmed 

linearly decreasing weights; taking 𝜏 = ⌊3𝑛 4⁄ ⌋ , they are generated by the weight function  

                                             𝜓(𝑡) = (1 −
𝑡

𝜏
) 𝐼[𝑡 < 𝜏],      𝑡 ∊ [0,1].                                         (5) 
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The computation of IWRQ may directly exploit the FAST-LTS algorithm of Rousseeuw & 

van Driessen (2006).  

 

2    Data description 

We analyze the second round of the presidential election in 2018 in the Czech Republic with 

two candidates Miloš Zeman and Jiří Drahoš. The results of Miloš Zeman as percentages are 

used over the individual 𝑛 = 77 Czech counties (including Prague) as a response in (1) 

modeled by 4 predictors, i.e. with 𝑝 = 4, evaluated for each of the counties: 

• 𝑋1 = average wage in the fourth quarter of 2018; 

• 𝑋2 = logarithm of the population density (people per 𝑘𝑚2), according to the 2011 

census; 

• 𝑋3 = percentage of believers, according to the result of the 2011 census; 

• 𝑋4 = percentage of people in execution in 2019. 

The sources of each variable are specified in Figures 1 to 5. The variables are continuous 

except for 𝑋3, for which we were only able to find the data dividing the counties to 5 groups. 

All computations in this paper were performed in R software (R Core Team, 2017).  

The response is shown in Figure 1 with darker shades corresponding to a higher result; 

such map was obtained using the (very convenient) library RCzechia (version 1.6.2) of 

R software. Maps of the 4 predictors are shown as left images of Figures 2 to 5, where darker 

shades correspond to higher values of 𝑋1, 𝑋2, 𝑋3, and 𝑋4. For the sake of brevity, we skip the 

usual exploratory data analysis. At least, we would like to report the correlation matrix of the 

4 variables, which equals 

                                         𝑅 = (

1 0.34 −0.15 −0.18
0.34 1 0.05 0.15

−0.15 0.05 1 −0.58
−0.18 0.15 −0.58 1

).                                       (6) 

 

3 Beta regression  

Beta regression is a generalized linear model suitable for data with a response in the form of 

percentages. We consider a beta regression model, where 𝑌 is used as the response of 

4 predictors. All predictors turn out to be statistically significant using the Wald test on the 

level 𝛼 = 0.05. Particularly, the 𝑝-values of the 4 predictors are 0.04, 5 ∙ 10−5, 8 ∙ 10−5, and 

3 ∙ 10−10. The pseudo-𝑅2 in the model is 0.52. The mean square error, i.e. the common 
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measure of prediction ability of (not only) the beta regression is presented in Table 1; there, 

values of the response were taken as percentages (with e.g. 50 per cent considered as to 0.50). 

 

Tab. 1: Mean square error evaluated for the regression model 𝒀~𝑿𝟏 + 𝑿𝟐 + 𝑿𝟑 + 𝑿𝟒.  

Regression estimator MSE Package in R software 

Beta regression  25.4 betareg 

Least squares in (1) 25.6 base 

L1-estimator in (1) 27.7 quantreg 

MM-estimator in (1) 26.0 rrcov 

Source: own computations 

 

4 Linear regression 

Right images of Figures 2 to 5 show the least squares estimates in the linear model of the 

response against each of the individual predictors separately. Some of the models turn out to 

be heteroscedastic, which advocates considering regression quantiles for the modeling. In 

Figure 2, we also show a LWS fit (cyan) to reveal that the outlying county (Prague) does not 

have a leverage effect on the regression fit. The coefficient of determination in the linear 

regression model with all 4 predictors jointly is equal to 𝑅2 = 0.52. As Table 1 reveals, beta 

regression is slightly better than the least squares estimator in (1) in terms of the mean square 

error. It performs also better than the very robust MM-estimate. 

 

Fig. 1: Map of the Czech Republic shaded according to 𝒀, i.e. percentage of popular vote 

in each county for Miloš Zeman. 

 

 

Source of the data: https://www.czso.cz/csu/czso/volba-prezidenta-republiky-2018 

 

 

https://www.czso.cz/csu/czso/volba-prezidenta-republiky-2018
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Fig. 2. Left: Map shaded according to 𝑿𝟏. Right: 𝒀 against 𝑿𝟏 (with a linear trend 

estimated by least squares).  

   

Source of the data: https://www.czso.cz/csu/xb/prumerna-mzda-ve-4-ctvrtleti-2018-a-v-roce-2018 

 

Fig. 3. Left: Map shaded according to 𝑿𝟐. Right: 𝒀 against 𝑿𝟐 (with a linear trend 

estimated by least squares).  

    

Source of the data: https://cs.wikipedia.org/wiki/Seznam_okresů_v_Česku 

 

Fig. 4. Left: Map shaded according to 𝑿𝟑. Right: 𝒀 against 𝑿𝟑 (with a linear trend 

estimated by least squares).  

    

Source of the data: Růžičková (2014) 

 

https://www.czso.cz/csu/xb/prumerna-mzda-ve-4-ctvrtleti-2018-a


 

 
 

338 

Fig. 5. Left: Map shaded according to 𝑿𝟒. Right: 𝒀 against 𝑿𝟒 (with a linear trend 

estimated by least squares).  

 

Source of the data: http://www.mapaexekuci.cz 

 

Fig. 6. Regression quantiles (left) and IWRQ (right) in the model 𝒀~𝑿𝟏. 

       

Source: own computations 

 

Fig. 7. Regression quantiles (left) and IWRQ (right) in the model 𝒀~𝑿𝟐. 

   

Source: own computations 
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Fig. 8. Regression quantiles (left) and IWRQ (right) in the model 𝒀~𝑿𝟑. 

     

Source: own computations 

 

Fig. 9. Regression quantiles (left) and IWRQ (right) in the model 𝒀~𝑿𝟒. 

    

Source: own computations 

 

5 Standard and implicitly weighted regression quantiles  

Assuming the linear model with all 4 predictors jointly, we compute standard regression 

quantiles using the library quantreg of R software with 𝜏 = 0.2, 𝜏 = 0.5, and 𝜏 = 0.8; these 

are shown in the left images of Figures 6 to 9. Further, we used 𝑐 = 0.005, 𝑐 = 1, and 𝑐 = 5 

to compute IWRQ; the obtained quantiles are shown in the right images of Figures 6 to 9.       

 

Conclusions 

Political scientists may use quintile regression to find interesting connections between the 

election results and regional economic characteristics on the level of individual counties. In 

comparison to modeling by the least squares estimator, regression quantiles may bring 

additional knowledge compared to that following from spatial statistical methods exploited 

e.g. by Maškarinec (2017). This paper compares the performance of standard regression 

quantiles with the performance of the recently proposed IWRQ procedure. The results of 
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IWRQ are meaningful for heteroscedastic regression models. They seem robust with respect 

to leverage points, while yielding similar results to standard regression quantiles over data 

without leverage points. Further, the IWRQ computation does not suffer from convergence 

problems, although we use in fact also categorized predictors and only 𝑛 = 77 counties. For 

comparison, it would be also interesting to analyze the election data also by robust regression 

methods (e.g. of those overviewed in Kalina (2013)) or geographically weighted regression. 
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